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Abstract

Following Griffiths and Tenenbaum (2006), we explore
whether people use relevant social information to improve
their already nearly optimal predictions about quantities in ev-
eryday events. We tested this question in two experiments in-
volving quantities in three domains: cake baking times, movie
runtimes, and podcast lengths. In Experiment 1, we found that
participants were sensitive to the difference between relevant
and irrelevant social information. In Experiment 2, we found
that people consistently used relevant social information to ad-
just their predictions in the expected directions. We introduce
an optimal social prediction model but find that it does not con-
sistently perform better at accounting for our participants’ so-
cial predictions than an optimal non-social prediction model.
We conclude by discussing whether people use social infor-
mation for prediction in an optimal way.
Keywords: prediction; social inference; Bayesian inference

Sometimes, the quickest way to learn something is to ask
someone who knows the answer. But we don’t always need to
directly ask others to benefit from their knowledge. Simply
observing how other people act can provide us with infor-
mation about what they know, due to our ability to draw in-
ferences using our understanding of the relationship between
other people’s knowledge and their behavior (e.g. Baker &
Tenenbaum, 2014; Baker, Jara-Ettinger, Saxe, & Tenenbaum,
2017; D. T. Gilbert, 1998; Malle & Knobe, 1997; Malle,
2006).

We can also use this ability for prediction. For example,
suppose that a cake has been baking in the oven for 20 min-
utes. What would you predict is the total baking time of the
cake? This example comes from a study by Griffiths and
Tenenbaum (2006) in which they found that people’s predic-
tions across multiple domains were remarkably close to op-
timal Bayesian predictions, given the actual distributions of
quantities like baking times from cake recipes.

Now suppose that the person who made the cake is in the
kitchen leaning against the oven at the 20-minute mark. What
would you now predict is the total baking time? Intuitively,
it seems odd for someone to be doing this unless they ex-
pect the cake to be ready soon. As a result, in this case,
you might lower your predicted baking time. If so, the ad-
ditional information about the person caused you to change
your prediction due to your understanding of the relationship
between people’s knowledge and and their behavior. More
importantly, the information potentially allowed you to make
a more accurate prediction. When the person is not in the

kitchen, you have nothing but your general knowledge of cake
baking times to go on. But when the person is in the kitchen,
you have a valuable piece of indirect information to incorpo-
rate into your prediction.

Broadly speaking, this is an example of what social psy-
chologists call informational social influence: being influ-
enced by others because you believe they know something
you do not (Detusch & Gerard, 1955; Cialdini & Gold-
stein, 2004). More specifically, there is evidence that people
take social information into account when making inferences
about things like whether an action was causally responsi-
ble for an outcome (E. A. Gilbert, Tenney, Holland, & Spell-
man, 2015; Goodman, Baker, & Tenenbaum, 2009; Lagnado
& Channon, 2008; Kirfel & Lagnado, 2021).

In this paper, we explore whether people also take social
information into account when making everyday predictions
about quantities like cake baking times. We tested this ques-
tion in two experiments. In the next section, we briefly review
the modeling approach introduced by Griffiths and Tenen-
baum (2006) for generating optimal predictions. We then de-
scribe our experiments designed to test whether people are
sensitive to relevant social information and if the predictions
they make by incorporating that information deviate from the
model’s predictions.

Predicting quantities
Griffiths and Tenenbaum (2006) introduced a Bayesian model
of optimal (non-social) prediction, which we briefly review
here, using the cake-baking example to illustrate. The model
computes a posterior probability distribution over the total
baking time ttotal as follows:

p(ttotal |t) =
p(t|ttotal) · p(ttotal)

p(t)
, (1)

where t is the initial observed time—20 minutes in our exam-
ple. The likelihood term, p(t|ttotal), specifies the probability
that you notice the cake at time t of the cake’s total baking
time. For simplicity, the model assumes that it is equally
likely that you observe an event at any point in its duration.
Thus, in this example, the model assumes it is equally likely
that you would see the cake in the oven right after it was put
in as just before it was done. In other words, the likelihood
term is uniform: p(t|ttotal) =

1
ttotal

.



p(ttotal) specifies a prior probability distribution over the
quantity being estimated. In our example, p(ttotal) is a dis-
tribution of cake baking times. This distribution will vary
depending on the scenario—cake baking times will have a
different distribution than movie runtimes—so we estimated
this distribution using empirical data separately for each sce-
nario in our experiments, described later.

Following Griffiths and Tenenbaum (2006), we define the
final prediction of the model t∗ to be the median of the poste-
rior probability distribution. Intuitively, t∗ represents a “best
guess” estimate of the duration of the event. Formally, t∗ is
defined such that1:

t∗

∑
k=t

p(ttotal |k) = 0.5

Incorporating social information
Now suppose that o represents an observation—like the fact
that someone is leaning up against an oven with a cake in it.
We can modify Equation 1 to incorporate o as follows:

p(ttotal |t,o) =
p(ttotal) · p(t,o|ttotal)

p(t,o)
. (2)

If we again assume that t is uniformly distributed between 0
and ttotal , and additionally assume that o is a function of both
t and and ttotal , the likelihood term can be expressed as:

p(t,o|ttotal) = p(t|ttotal) · p(o|t, ttotal)

=
1

ttotal
· p(o|t, ttotal) (3)

Thus, the key difference between a non-social and social pre-
diction model is in the term p(o|t, ttotal). Later, we introduce
one way of defining this term.

Our primary research question was whether people use rel-
evant social information to optimally adjust their predictions
of total quantities. But first we asked a more basic question:
whether people are sensitive to the difference between rel-
evant and irrelevant social information for the purposes of
prediction. For example, seeing the person who made the
cake leaning up against the oven seems relevant for predict-
ing how much more time will pass before the cake is done.
But seeing someone who had nothing to do with making the
cake do the same provides much less useful information.

The term p(o|t, ttotal) captures the probability of an obser-
vation like seeing someone leaning against the oven. In Ex-
periment 1, we asked participants to make judgements about
probabilities like these. Specifically, they rated the likelihood
of seeing several events involving people at different times.
We hypothesized that they would rate irrelevant events—like
a random person leaning against the oven—as about equally
likely to occur at any time. By contrast, we hypothesized that
participants would rate relevant social events—like the baker
of a cake leaning against the oven—as more likely to occur at
later times.

1For details about computing p(ttotal |t), see Griffiths and Tenen-
baum (2006).

Experiment 1
Method
All methods and statistical analyses were preregistered:
https://osf.io/zsmda. All data, code, and materials from
Experiments 1 and 2 are available at https://github.com/
jernlab/social-prediction.

Participants Participants completed the experiment online
through Prolific and were paid for participation. We col-
lected data in batches and replaced participants who were ex-
cluded (one for failing an attention check described below)
until achieving a pre-planned sample size of at least 60 (final
N = 61).

Design and Procedure On each page of the experiment,
participants saw a scenario such as “A cake has been bak-
ing in an oven for 10 minutes”. Subjects were then asked to
rate the likelihood (on a 1–7 scale from “not at all likely” to
“very likely”) of both a relevant social observation and an ir-
relevant social observation. Participants repeated this for the
same scenario for four additional values of t (e.g., the amount
of time the cake was baking in the oven). They then repeated
this entire procedure for two more scenarios.

Participants saw three scenarios in a random order: a cake
baking in an oven, a movie playing in a theater, and someone
listening to a podcast. The first two scenarios were inspired
by those used in Griffiths and Tenenbaum (2006). The full
text of each scenario and the relevant and irrelevant observa-
tions used are below. In each case, X was replaced with the t
value.

• Cake: A cake has been baking in an oven for X minutes.
On the following scale, how likely do you think it would
be to now see ...

– Relevant: the person who made the cake is leaning
against the oven.

– Irrelevant: someone who didn’t make the cake is leaning
against the oven.

• Movie: A movie has been playing for X minutes. On the
following scale, how likely do you think it would be to now
see 10 people ...

– Relevant: exit the movie’s showroom.
– Irrelevant: exit the showroom of a movie next door.

• Podcast: Someone has been listening to a podcast for X
minutes. On the following scale, how likely do you think
it would be to now hear ...

– Relevant: the podcast host say “Welp, that’s all we
planned to discuss this week!”

– Irrelevant: someone nearby says “Hey, I like that pod-
cast too. Cool.”

Each participant rated the likelihoods of these events for
multiple values of t, which we refer to as levels. The levels

https://osf.io/zsmda
https://github.com/jernlab/social-prediction
https://github.com/jernlab/social-prediction


Level

Scenario 1 2 3 4 5

Cake 10 20 35 50 70
Movie 30 45 60 85 100
Podcast 15 30 55 75 105

Table 1: Values of t (in minutes) for each level of each sce-
nario in Experiments 1 and 2.

of each scenario are shown in Table 1. Participants provided
ratings for all levels of one scenario in increasing order before
moving to another scenario.

Experiment 1 therefore employed a 3 (scenario) × 5 (level)
× 2 (observation: relevant vs. irrelevant) within-subjects de-
sign.

After answering all questions, participants completed an
attention check: a multiple choice question asking what topic
(i.e., scenario) was not mentioned in the survey.

Results
Figure 1 shows participants’ ratings for each scenario. To test
our hypotheses, we fit a linear mixed effects model (Brown,
2021) to the full data set using observation type and level (and
their interaction) as fixed effects and fitting by-scenario ran-
dom intercepts, and by-subject random slopes and intercepts.

As predicted, there was a significant effect of level, such
that each increase in level resulted in an estimated increase in
likelihood rating of about 0.5 (β̂ = 0.52, SE = 0.06, t = 9.33,
p = 1.71× 10−15). However, this effect was qualified by a
predicted interaction with observation type (relevant or irrel-
evant), also significant. Specifically, the increase in likeli-
hood ratings as level increased was smaller for irrelevant ob-
servations than for relevant observations, resulting in a differ-
ence in estimated slope of about 0.4 (β̂ =−0.40, SE = 0.06,
t = −7.31, p = 4.11× 10−13). This interaction is evident in
Figure 1 by comparing the ratings for the relevant and irrele-
vant conditions.

Discussion
Experiment 1 suggests that people are sensitive to the differ-
ence between relevant and irrelevant social information. Our
participants did not see a relationship between t and the irrele-
vant observations, but did see a relationship between t and the
relevant observations. This suggests that people will incorpo-
rate relevant social information into their predictions about
quantities like a cake’s total baking time. We tested this ques-
tion in our second experiment.

Experiment 2
In Experiment 2, participants predicted durations of events,
with or without relevant social information. We predicted
that if participants incorporated the social information we
presented them with into their predictions, they would give
consistently lower predictions than participants who did not
have this information.

Method
All methods and statistical analyses were pre-registered:
https://osf.io/qczes.

Participants
300 participants (150 in each condition) completed the exper-
iment online through Prolific and were paid for participation.

Design and Procedure Experiment 2 largely resembled
Experiment 1 in design and procedure. Participants saw the
same three scenarios in random order, each with five different
t values in Table 1 in increasing order. There were two impor-
tant differences. First, participants were asked to predict total
times (like the total baking time of the cake). Second, rather
than answering questions about relevant and irrelevant social
observations, participants were randomly assigned to one of
two between-subject conditions: a non-social condition or a
social condition.

Participants in the non-social condition were only provided
with the basic scenario. Participants in the social condition
were also given the relevant social information from Experi-
ment 1. Subjects were then asked to predict the total time for
each scenario. For example, in the cake scenario, they were
asked, “What would you predict is the total baking time of
the cake? (in minutes)”. The italicized part of the question
varied by scenario. Complete descriptions of the scenarios
are below. The text in brackets appeared only in the social
condition. X was replaced with the t values from Table 1.

• Cake: A cake has been baking in an oven for X minutes.
[Social condition: At that time, the person who made the
cake is leaning against the oven.]

• Movie: A movie has been playing for X minutes. [Social
condition: At that time, 10 people exit the movie’s show-
room.]

• Podcast: Someone has been listening to a podcast for X
minutes. [Social condition: At that time, the podcast’s host
says, “Welp, that’s all we planned to discuss this week!”]

Experiment 2 therefore employed a 3 (scenario) × 5 (level)
× 2 (context: non-social vs. social) mixed design.

After answering all questions, participants completed the
same attention check as in Experiment 1.

Non-social model predictions Recall that the distribution
of p(ttotal) in Equation 1 is likely to vary by quantity. We
therefore generated empirical estimates of p(ttotal) separately
for each scenario:

• Cake: We collected data from the BBC Food website. We
searched all recipes of traditional dessert cakes (excluding
things like crab cakes) and recorded the recommended total
baking times for each.

• Movie: We used The Movie Database (TMDb) 5000
dataset published in 2018. The dataset includes the du-
rations, along with titles, popularity ratings, and other vari-

https://osf.io/qczes
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Figure 1: Experiment 1 data. The x-axes show the t values and the y-axes show the ratings on a 1–7 scale. The large points
represent mean ratings with 95% confidence intervals (in most cases barely visible). Each smaller point represents a single
subject’s rating.

Figure 2: p(ttotal) distribution for each scenario.

ables for nearly 5000 movies catalogued on the TMDb
website.

• Podcast: We used a public iTunes podcast dataset pub-
lished in 2017. The data was obtained from iTunes and
includes the durations, names, descriptions, and other vari-
ables for over 10,000 podcasts.

For each scenario, we calculated relative probabilities of the
raw data from each dataset as the distribution p(ttotal). The
resulting distributions are shown in Figure 2.

Results
Individual participant predictions were excluded as outliers if
they were more than three standard deviations from the mean
for a given context (social or non-social) and level (t value).
Out of 4500 total data points, 83 (1.8%) were excluded.

Figure 3 shows the experiment results. In all scenarios,
mean predictions were consistently lower in the social condi-
tion compared to the non-social condition.

We fit a linear mixed effects model to the full data set. Be-
cause the model in our pregistration plan resulted in a singular
fit, we simplified the model by removing the random slopes
from the model and re-fit it. The resulting model included
context (social vs. non-social) and level (and their interac-
tion) as fixed effects and by-scenario and by-subject random
intercepts.

As predicted, there was a significant effect of context, such
that social predictions were estimated to be about 17 minutes
lower than non-social predictions (β̂ = −16.5, SE = 1.48,
t = −11.14, p < 2× 10−16). Also as predicted, there was a
significant effect of level, such that each increase in level re-
sulted in an estimated increase in total predicted time of about
14 minutes (β̂ = 13.69, SE = 0.32, t = 43.31, p < 2×10−16).

However, there was also a significant interaction between
context and level. Specifically, the increase in predictions
as level increased was slightly greater for the social condi-
tion than for the non-social condition (β̂ = 2.04, SE = 0.45,
t = 4.56, p= 4.91×10−6). We had no specific predictions re-
garding an interaction, but we considered the possibility that
we might find an interaction in the results, given that we were
using three very different scenarios with different empirical
distributions.

The results in Figure 3 suggested that this interaction might
be limited to only certain scenarios, so we ran a follow-up ex-
ploratory analysis that we did not preregister. Specifically, we
fit separate linear mixed effects models to subsets of the data
for each of the three scenarios. We used the same statistical
model as before, but with the actual t values as a fixed ef-
fect instead of level. This decision allowed us to get more
interpretable estimates of the fixed effects.

The effects of context and t value were significant for all
scenarios (all ps < 1× 10−9). For the movie scenario, par-
ticipants’ predictions were estimated to be about 21 minutes
lower than the non-social predictions (β̂ = −21.30, SE =
3.68, t = −5.79, p = 8.63 × 10−9) and there was a sig-
nificant interaction between context and t level (β̂ = 0.21,
SE = 0.05, t = 3.94, p = 8.58×10−5). For the podcast sce-
nario, participants’ predictions were estimated to be about 23
minutes lower than the non-social predictions (β̂ = −22.78,
SE = 1.25, t = 18.20, p < 2× 10−16) and there was a sig-
nificant interaction between context and t level (β̂ = 0.11,
SE = 0.02, t = 5.44, p = 6.46×10−8). For the cake scenario,
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Figure 3: Experiment 2 results. The x-axes show the t values and the y-axes show the predicted ttotal values. The large points
represent mean ratings with 95% confidence intervals (in most cases, barely visible). Each smaller point represents a single
subject’s prediction. The orange and blue lines show the non-social and social model predictions respectively.

participants’ predictions were estimated to be about 6 minutes
lower in the social condition compared to the non-social con-
dition (β̂ =−5.98, SE = 0.95, t =−6.30, p = 4.03×10−10),
and the interaction between context and t level was not signif-
icant (β̂=−0.02, SE = 0.02, t =−0.84, p= 0.40). In sum, it
appears that the interaction between context and t value was
small and driven by the movie and podcast conditions.

Discussion
When given different relevant social information, our partic-
ipants consistently made lower predictions than when they
did not have the social information. Additionally, we gener-
ated model predictions for the non-social conditions using the
optimal Bayesian model developed by Griffiths and Tenen-
baum (2006). The model’s predictions matched our partici-
pants’ predictions quite well (and the social predictions less
so), even for distributions with different empirical distribu-
tions. Experiment 2 therefore largely replicated their results.
But the results from our social condition suggest that their
model needs to be modified to incorporate social information
if it is to account for how people use social information for
prediction. We describe one way this can be done in the next
section.

One result we did not predict was the interaction between
context and t, reflected in Figure 1 by the convergence of par-
ticipants’ mean predictions between the social and non-social
conditions at higher values of t, perhaps most evident in the
movie scenario. One possible explanation for this result is
that the relative information value provided by the social ob-
servations in our scenarios diminished as t increased because
participants already had considerable existing knowledge of
the empirical distributions. For example, if you see people
leaving a theater 60 minutes into a movie, that is somewhat

surprising and you’d probably assume they know something
you don’t. But if you see people leaving 100 minutes in, it’s
less surprising as you likely expected the movie to be ending
soon anyway.

An optimal social prediction model

While our results strongly support the conclusion that people
take relevant social information into account when making
predictions about quantities, an important question remains:
are they doing so in an optimal way? This was the origi-
nal question posed by Griffiths and Tenenbaum (2006). We
now return to our specification of an optimal social prediction
model in Equations 2 and 3.

Recall that fully specifying a social prediction model re-
quires defining the term p(o|t, ttotal). Here, we adopt a utility-
based approach that assumes agents choose actions that in-
crease rewards and minimize costs (Jara-Ettinger, Gweon,
Schulz, & Tenenbaum, 2016; Jara-Ettinger, Schulz, & Tenen-
baum, 2020). We make a simple assumption that, for exam-
ple, a baker derives greater rewards from being near the oven
as a cake nears closer to being done baking. Specifically, we
define reward r as:

r =
1

ttotal − t
. (4)

In many situations, the probability of someone taking ac-
tion will not increase linearly with r. For example, you are not
likely to see the baker of a cake waiting near the oven until
the cake is nearly done. Therefore, we defined the likelihood



Model

Scenario Social Non-social

Cake 5206.0 3179.0
Movie 2650.9 5589.1
Podcast 5016.6 4802.5

Table 2: BIC results for each model by scenario for Experi-
ment 2 social context data. The best-scoring model for each
scenario is marked in bold.

term, p(o|t, ttotal), to be a logistic function of r2:

p(o|t, ttotal) =
1

1+ exp−β0+β1r . (5)

Because the probability of observing someone take an action
might depend on the situation (leaving a movie theater before
a movie has ended may be less likely than standing in front of
the oven several minutes before a cake has finished baking),
we fit parameters β0 and β1 to the data for each scenario of
Experiment 2.

Model predictions
We fit the model to data in each scenario by performing a
grid search of parameters (b0 from -20 to 20 in increments
of 0.5, and b1 from 0 to 400 in increments of 5) minimizing
mean-squared error (MSE) with participants’ predictions in
Experiment 2. Figure 3 shows the resulting predictions.

In an exploratory analysis that was not preregistered, we
tested whether the additional assumptions of the social model
provided a better fit to the data from our social condition
than the original Griffiths and Tenenbaum (2006) non-social
model by calculating the Bayesian Information Criterion
(BIC)—which penalizes models with extra parameters—for
each model in each scenario. We used the posterior distri-
bution (p(ttotal |t,o) or p(ttotal |t)) as the likelihood of each
model3. The results are shown in Table 2.

Despite the social model’s close fit to mean predictions in
Figure 3, it did not compare favorably with the non-social
model, resulting in a higher BIC in two of the three scenarios.
Our analysis indicates that, except for in the movie scenario,
the additional assumptions of our social model do not provide
much additional explanatory power.

Do people use social information to make optimal
predictions?
Does the relatively poor performance of our social model
mean that people’s social predictions were not optimal? Our

2We thank an anonymous reviewer for this suggestion.
3Recall that we used empirical prior distributions for each sce-

nario. Because the datasets that these distributions were based on
did not include some values of t, the resulting posterior probabili-
ties for the models were technically 0 for those values. We chose
to omit data points for which the posteriors would be 0 in our BIC
calculations (i.e., where people predicted values of t that were not in
our data sets). The total number of omitted data points, at most, was
15.5% in one scenario.

results make it difficult to judge for several reasons.
First, our social model, which incorporated some simple

assumptions about how people’s behavior in multifaceted sit-
uations, is a function only of how much time is remaining
before an event. This is certainly an over-simplification; our
participants may have had more complex models of human
behavior in mind.

An alternative to directly specifying the likelihood term
p(o|t, ttotal) would be to use people’s own judgments as em-
pirical likelihood estimates. For example, in our Experiment
1, we asked people how likely it was to see someone in the
kitchen leaning against the oven with a cake that had already
been baking in it for 20 minutes. Ratings like these could
be used as inputs to a model that generates predictions of the
most likely total baking times for cakes, given that someone
is leaning against the oven.

We were unable to use our own data for this purpose be-
cause we did not provide participants with one key piece of
information: ttotal . As a result, they likely inferred this infor-
mation and incorporated it into their ratings. To get true em-
pirical likelihood judgments from people, they would need
to be provided with the observation (e.g., the person lean-
ing against the stove), the time t (e.g., the elapsed baking
time), and the total duration of the event (e.g., the total baking
time). Future work may wish to collect these judgments as a
means of generating social model predictions to test if peo-
ple’s predictions are at least consistent with their own likeli-
hood judgments (and with the empirical distributions of the
events themselves).

Another difficulty with judging whether people use social
information information to make optimal predictions using
our data is that people may have been suboptimal in both the
non-social and social conditions. For example, if our par-
ticipants provided over-estimates in both conditions, it might
explain why the non-social model provides a good fit to the
social data.

Conclusion
When we have relevant knowledge, we generally use it. And
when we don’t know things, it’s natural to look to others
around us who are more knowledgeable. Our work suggests
that people sometimes do both at the same time: combine
their existing knowledge of a domain with relevant social
cues from others who likely have specific additional knowl-
edge. Our work provides additional support for the idea that,
without the social cues, people are capable of making close
to optimal predictions about real-world quantities. But addi-
tional research will be needed to determine if the way people
incorporate social information into those predictions is also
close to optimal.

Acknowledgements
Rose-Hulman’s IP/ROP provided funding for this project. We
thank multiple anonymous reviewers for valuable feedback.



References
Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B.

(2017). Rational quantitative attribution of beliefs, desires
and percepts in human mentalizing. Nature Human Be-
haviour, 1(4), 1–10.

Baker, C. L., & Tenenbaum, J. B. (2014). Modeling human
plan recognition using Bayesian theory of mind. In G. Suk-
thankar, R. P. Goldman, C. Geib, D. Pynadath, & H. Bui
(Eds.), Plan, activity and intent recognition: Theory and
practice. Morgan Kaufmann.

Brown, V. A. (2021). An introduction to linear mixed-effects
modeling in R. Advances in Methods and Practices in Psy-
chological Science, 4(1), 1–19.

Cialdini, R. B., & Goldstein, N. J. (2004). Social influence:
Compliance and conformity. Annual Review of Psychology,
55, 591–621.

Detusch, M., & Gerard, H. B. (1955). A study of normative
and informational social influences upon individual judg-
ment. The Journal of Abnormal and Social Psychology,
51(3), 629–636.

Gilbert, D. T. (1998). Ordinary personology. In D. T. Gilbert,
S. T. Fiske, & G. Lindzey (Eds.), The handbook of social
psychology (Vol. 1). New York: Oxford University Press.

Gilbert, E. A., Tenney, E. R., Holland, C. R., & Spellman,
B. A. (2015). Counterfactuals, control, and causation: Why
knowledgeable people get blamed more. Personality and
Social Psychology Bulletin, 41(5), 643–658.

Goodman, N. D., Baker, C. L., & Tenenbaum, J. B. (2009).
Cause and intent: Social reasoning in causal learning. In
Proceedings of the 31st Annual Conference of the Cognitive
Science Society.

Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predic-
tions in everyday life. Psychological Science, 17(9), 767–
773.

Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum,
J. B. (2016). The naı̈ve utility calculus: Computational
principles underlying commonsense psychology. Trends in
Cognitive Sciences, 20(8), 589–604.

Jara-Ettinger, J., Schulz, L. E., & Tenenbaum, J. B. (2020).
The naive utility calculus as a unified, quantitative frame-
work for action understanding. Cognitive Psychology, 123,
101334.

Kirfel, L., & Lagnado, D. (2021). Causal judgments about
atypical actions are influenced by agents’ epistemic states.
Cognition, 212, 104721.

Lagnado, D. A., & Channon, S. (2008). Judgments of casue
and blame: The effects of intentionality and foreseeability.
Cognition, 108, 754–770.

Malle, B. F. (2006). How the mind explains behavior: Folk
explanations, meaning, and social interaction. MIT Press.

Malle, B. F., & Knobe, J. (1997). The folk concept of inten-
tionality. Journal of Experimental Social Psychology, 33,
101–121.


	Predicting quantities
	Incorporating social information
	Experiment 1
	Method
	Results
	Discussion

	Experiment 2
	Method
	Participants
	Results
	Discussion

	An optimal social prediction model
	Model predictions
	Do people use social information to make optimal predictions?

	Conclusion
	Acknowledgements
	References

